Hello

Advanced Analog Integrated Circuits

Electronic Noise

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Copyright © 2016 by Bernhard Boser

Types of Noise

- Interference, "Man-made" Noise
 - Substrate coupling
 - Supply noise
 - Signal coupling
 - Solutions:
 - Fully differential circuits
 - Layout techniques
 - Shielding
- Electronic noise
 - Fundamental physics based
 - <u>Thermal and shot noise</u>
 - Technology related
 - Flicker noise (see later), drift

Noisy Signals

Thermal Noise Manifestations

Example: Resistor

 J. B. Johnson, "Thermal Agitation of Electricity in Conductors," Phys. Rev., pp. 97-109, July 1928.

Properties of Thermal Noise

Thermal Noise Power Spectrum

Advanced Analog Integrated Circuits

Modeling Noise

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Copyright © 2016 by Bernhard Boser

Resistor Noise Models

Sloppy Nomenclature

- For convenience, noise in circuits is usually represented by the mean squared noise voltage $\overline{v_n^2}$ or current $\overline{i_n^2}$
- It is customary to refer to these quantities as "noise power", especially when comparing them to signals which are usually represented by voltages or currents, not power
- The actual noise power is easily obtained by dividing or multiplying the mean squared values by the resistance

Resistors in Series

Signal-to-Noise Ratio

 $P_{s} = \frac{1}{2} I_{s}^{2} R_{L}$: R, is 467-0 P. 3 RL)c SMR Uhr of R 6048 IM HT 4 65. Ps, unia SNR. La fo = 25 m W

Noise Bandwidth

Band-Limited Noise Example

RC Noise Spectral Density

Useful Integrals

Generalization in

A. Dastgheib and B. Murmann, "Calculation of Total Integrated Noise in Analog Circuits," IEEE TCAS1, vol. 55, no. 10, pp. 2988-2993, Oct. 2008.

Equipartition Theorem

Equivalent Noise Bandwidth

Advanced Analog Integrated Circuits

Noise–Power Tradeoff

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Copyright © 2016 by Bernhard Boser

Analog versus Digital SNR

Representative Circuit

Peak SNR versus Capacitance

• SNR versus C for 1-V sinusoidal signal at 100°C

Bits	SNR [dB]	С
3.0	20	4.1 aF
6.3	40	412 aF
9.7	60	41 fF
13.0	80	4.1 pF
16.3	100	412 pF
19.6	120	41 nF
23.0	140	4.1 μF

Aside: Oversampling

Noise-Power Tradeoff

Advanced Analog Integrated Circuits

Noise Representations

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Copyright © 2016 by Bernhard Boser

Noise Representations

Output and Input Referred Noise

Minimum Detectable Signal

Source Impedance

Equivalent Input Current Noise

Input Voltage and Current Noise Sources

Correlated Noise

- Counting some of noise twice
 - When noise sources are correlated
 - And both noise sources matter (i.e. contribute similarly to the noise at the output of the circuit)
- Situations:
 - a) Custom circuit with known R_s : Represent input referred noise with one source for a specific R_s
 - b) General purpose circuit (e.g. opamp) Need to consider correlation in noise calculations *if* both sources matter (rare)

Examples

BJT Opamp

LT1115 - Ultra-Low Noise

Input Noise Voltage Density	f ₀ = 10Hz f ₀ = 1000Hz,	1.0 0.9	1.2	nV/√Hz nV/√Hz
Wideband Noise	DC to 20kHz	120		nV _{RMS}
Corresponding Voltage Level re 0.775V		-136		dB
Input Noise Current Density (Note 3)	f ₀ = 10Hz f ₀ = 1000Hz,	4.7 1.2	2.2	pA/√Hz pA/√Hz

JFET Opamp

OPA827

Input Voltage Noise:		
f = 0.1Hz to 10Hz	250	nV _{PP}
Input Voltage Noise Density:		
f = 1kHz	4	nV/√Hz
f = 10kHz	3.8	nV/√Hz
Input Current Noise Density:		
f = 1kHz	2.2	fA/√Hz

Source Resistance

Advanced Analog Integrated Circuits

Noise Calculations – Example

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Copyright © 2016 by Bernhard Boser

Example: Negative Feedback Amplifier

$$v_o = -v_i \frac{R_2}{R_1} = -a_v v_i$$

http://www.ti.com/lit/an/slva043b/slva043b.pdf

Noise Model

Circuit

6 noise sources!

Opamp

Noise Calculation

One noise source at a time (linear superposition) ۲

1) Noise at Output from R₁

2) Noise at Output from R₂

3) Noise at Output from R₃

Output Noise from Feedback Network

Input Referred Noise from Feedback Network

4) Noise from Opamp Voltage Noise

5) Noise from Opamp Current Noise

Noise from Opamp

$$\overline{v_{oa,n}^2} = \overline{v_{v,n}^2} \left(\frac{R_1 + R_2}{R_1}\right)^2 + \overline{i_{in,n}^2}R_2^2$$
 for $R_3 = 0$

$$\overline{v_{if,eq}^2} = \overline{v_{v,n}^2} \left(\frac{1+a_v}{a_v}\right)^2 + \overline{i_{in,n}^2} \frac{R_2^2}{a_v^2}$$
$$= \overline{v_{v,n}^2} \left(1+\frac{1}{a_v}\right)^2 + \underbrace{\overline{i_{in,n}^2}}_{\text{significant for high } R_s, R_1}$$

Total Input Referred Noise

$$\overline{v_{i,eq}^{2}} = \overline{v_{R_{1,n}}^{2}} \left(1 + \frac{1}{a_{v}}\right) + \overline{v_{v,n}^{2}} \left(1 + \frac{1}{a_{v}}\right)^{2} + \overline{i_{i,n}^{2}}R_{1}^{2}$$
Source and feedback a mplifier voltage noise current noise resistor
$$\overline{v_{v,n}^{2}} = 4 \frac{nV}{\sqrt{Hz}} \qquad \overline{i_{i,n}^{2}} = 1.2 \frac{pA}{\sqrt{Hz}} \qquad (uncorrelated) \qquad a_{v} \text{ large}$$

$$R_{1} = 50\Omega \qquad \overline{v_{v,n}^{2}} \text{ dominates over } \overline{i_{i,n}^{2}}, \qquad R_{1} = 1M\Omega$$

$$\overline{v_{v,n}^{2}} = \sqrt{\left(0.9 \frac{nV}{\sqrt{Hz}}\right)^{2} + \left(4 \frac{nV}{\sqrt{Hz}}\right)^{2} + \left(0.06 \frac{nV}{\sqrt{Hz}}\right)^{2}} \qquad \overline{v_{i,eq}^{2}} = \sqrt{\left(126 \frac{nV}{\sqrt{Hz}}\right)^{2} + \left(4 \frac{nV}{\sqrt{Hz}}\right)^{2} + \left(1200 \frac{nV}{\sqrt{Hz}}\right)^{2}}$$
Low source resistance:
$$Voltage noise dominates Use BJT \qquad High source resistance: Current noise dominates Use MOS$$

Additional Noise Topics

- Later in EE 240B
 - Noise in sampled data systems
 - (Low) noise amplifier design ...
 - Flicker noise
- RF noise metrics (EE 242A)
 - Noise figure
 - Receiver sensitivity
 - Phase noise in oscillators
- Cyclostationary noise
 - Noise in circuits with high signal amplitude which modulates the noise power spectral densities
 - E.g. oscillators, mixers, comparators

Summary

- Thermal noise is fundamental
- Random, but accurately described by universal statistics
- Strong correlation between noise and power dissipation for high accuracy analog systems
 - Up to 4x power for each extra bit
- Noise representations
 - PSD at output
 - Total noise at output
 - PSD at input (depends on R_s)
 - Minimum detectable signal (MDS)
- Noise contributions for different R_s
 - High R_s: current noise dominates (FET advantageous)
 - Low R_s: voltage noise dominates (BJT advantageous)